Finding Inverses of Functions Given an Equation

Name:

Date:

To find the inverse of a function given the equation, follow the 4 steps below.

Step 1: Replace f(x) with y.

Step 2: Interchange x with y. Swap

Step 3: Solve for y.

Step 4: If the inverse of f is a function, then replace y with $f^1(x)$.

Step 5: Verify by checking to if f(g(x)) = g(f(x))

f(x) = 3x + 5Example: y = 3x + 5x = 3y + 5-5 x-5=3y $\frac{x-5}{}=y$

The parent function of the original equation is a linear function with a slope. So thinking of the graph of a linear function with any slope... it will pass the horizontal line test! Therefore the inverse is also a function. So we can replace y with $f^2(x)$ to show that the inverse of f(x) is also a function

 $\frac{x-5}{2} = f^{-1}(x)$

f(x) = -2x + 8

f(x) = 4x + 1Ex 1:

Ex 2:

Ex 3: $f(x) = \frac{1}{3}x + 7$

function is an expression

where every input has exactly one output

dion NOTA Function

Currien inv

function

function

Swaps Domain Range

Keeper #5

If the degree of the function is oDD the inverse is also a function.

Let's try a quadratic function.

 $f(x) = x^2 - 5$ Ex:

Remember that the inverse operation of squaring a number is taking the $\pm \sqrt{}$ of that

When you decide if you should replace "y" with $f^2(x)$ at the end, think... "Will the original equation pass the horizontal line test??" Draw a quick sketch of a quadratic function in the following box:

Does it pass the test???

Try these:

Keeper #5

Ex 1:
$$f(x) = x^2 + 1$$

 $y = x^2 + 1$
 $x = y^2 + 1$
 $x = 1$
 $x = 1$
 $x = 2$
 $x = 3$
 x